ESTIMATING MAIZE GRAIN YIELD IN SCARCE FIELD-DATA ENVIRONMENT:
AN APPROACH COMBINING REMOTE SENSING AND CROP MODELLING IN BURKINA FASO

Leroux L., Baron C., Castets M., Escorihuela M.-J., Diouf A.A., Bégué A., Lo Seen D.
AfricaGIS2017, November, 2017, Ethiopia
Maize (Zea mays L.): Keystone of Food Security

- Most produced crop in the world

- In West Africa:
 - Staple crop
 - Providers of health benefits and vital nutrients
 - 30 kg/capita/year
Maize (Zea mays L.): Keystone of food security

- Most produced crop in the world

- In West Africa:
 - Staple crop
 - Providers of health benefits and vital nutrients
 - 30 kg/capita/year

Keystone to support food requirements and food security
Maize (Zea mays L.): Keystone of Food Security

- Most produced crop in the world

In West Africa:
- Staple crop
- Providers of health benefits and vital nutrients
- 30 kg/capita/year

Keystone to support food requirements and food security

Maize yield trends [Ray et al., 2012]

- Stagnation of maize yields
- Socio-economic x biophysical limitations
Maize (Zea mays L.): Keystone of Food Security

- Most produced crop in the world

- In West Africa:
 - Staple crop
 - Providers of health benefits and vital nutrients
 - 30 kg/capita/year

Keystone to Support Food Requirements and Food Security

- Decline in per capita food production [Ray et al., 2013]
- Stagnation of maize yields
- Socio-economic x biophysical limitations

Maize Yield Trends [Ray et al., 2012]
Maize (*Zea mays* L.): Keystone of Food Security

- Most produced crop in the world
- In West Africa:
 - Staple crop
 - Providers of health benefits and vital nutrients
 - 30 kg/capita/year

Keystone to Support Food Requirements and Food Security

- Stagnation of maize yields
- Socio-economic vs biophysical limitations

Decline in Per Capita Food Production [Ray et al., 2013]

Timely and reliable information on maize crop yields is needed to provide timely estimates of food shortage and support decision-making.
YIELD ESTIMATION METHODS

FIELD-BASED SURVEY

- Expensive (time & labor)
- Sampling methods
- Inaccessibility
- Difficulties to upscale to large areas
YIELD ESTIMATION METHODS

FIELD-BASED SURVEY

- Expensive (time & labor)
- Sampling methods
- Inaccessibility
- Difficulties to upscale to large areas

LACK OF GROUND DATA OR UNRELIABLE DATA
Yield Estimation Methods

<table>
<thead>
<tr>
<th>Context</th>
<th>Data</th>
<th>Methods</th>
<th>Biomass & Cstr</th>
<th>Yield</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Growth Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Approximation of the reality on the ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Potential yields under water or nutrient limitation</td>
</tr>
<tr>
<td>Field-based Survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Expensive (time & labor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sampling methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Inaccessibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Difficulties to upscale to large areas</td>
</tr>
</tbody>
</table>

Lack of Ground Data or Unreliable Data
<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>DATA</th>
<th>METHODS</th>
<th>BIOMASS & CSTR</th>
<th>YIELD</th>
<th>CONCLUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>YIELD ESTIMATION METHODS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMOTE SENSING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROP GROWTH MODEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIELD-BASED SURVEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMOTE SENSING
- Timely and exhaustive information on vegetation cover
- Biomass = f(Vegetation Indices)
- Empirical model calibrated with agricultural statistics **BUT** available ~ 3 months after the end of the cropping season

CROP GROWTH MODEL
- Approximation of the reality on the ground
- Potential yields under water or nutrient limitation

FIELD-BASED SURVEY
- Expensive (time & labor)
- Sampling methods
- Inaccessibility
- Difficulties to upscale to large areas

LACK OF GROUND DATA OR UNRELIABLE DATA
<table>
<thead>
<tr>
<th>OBJECTIVES</th>
</tr>
</thead>
</table>

IMPROVE MAIZE YIELDS ESTIMATION USING A CROP MODEL TO GENERATE DIFFERENT COMPONENTS OF YIELDS AS PROXY OF IN SITU OR AGRICULTURAL STATISTICS DATA, AND COMBINING THEM WITH REMOTE SENSING DATA

Uncalibrated approach [Lobell et al., 2015, Burke et al., 2017, Sibley et al., 2014]
Objectives

Improve maize yields estimation using a crop model to generate different components of yields as proxy of in situ or agricultural statistics data, and combining them with remote sensing data

Uncalibrated approach [Lobell et al., 2015, Burke et al., 2017, Sibley et al., 2014]

[1] Build a model relying on ecophysiological process
Objectives

Improve maize yields estimation using a crop model to generate different components of yields as proxy of in situ or agricultural statistics data, and combining them with remote sensing data

Uncalibrated approach [Lobell et al., 2015, Burke et al., 2017, Sibley et al., 2014]

<table>
<thead>
<tr>
<th>Context</th>
<th>Data</th>
<th>Methods</th>
<th>Biomass & Cstr</th>
<th>Yield</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

1. **[1]** Build a model relying on ecophysiological process
2. **[2]** Conduct a benchmarking between linear and nonlinear models
Objective

Improve maize yields estimation using a crop model to generate different components of yields as proxy of in situ or agricultural statistics data, and combining them with remote sensing data

Uncalibrated approach [Lobell et al., 2015, Burke et al., 2017, Sibley et al., 2014]

<table>
<thead>
<tr>
<th>Context</th>
<th>Data</th>
<th>Methods</th>
<th>Biomass & Cstr</th>
<th>Yield</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

1. Build a model relying on ecophysiological process

2. Conduct a benchmarking between linear and nonlinear models

3. Compare the performance of remote sensing-based model in estimating and forecasting
STUDY AREA & FIELDS DATA

- Tuy province of Burkina Faso
- Sudanian climate
- Rainy season: June-September
- Agropastorale activities
- Rainfed crops: mainly maize and cotton
STUDY AREA & FIELDS DATA

- Tuy province of Burkina Faso
- Sudanian climate
- Rainy season: June-September
- Agropastorale activities
- Rainfed crops: mainly maize and cotton

Field surveys in 2014-2015-2016
- 114 maize fields
- Agricultural practices and vegetation parameters
STUDY AREA & FIELDS DATA

- Tuy province of Burkina Faso
- Sudanian climate
- Rainy season: June-September
- Agropastorale activities
- Rainfed crops: mainly maize and cotton

Field surveys in 2014-2015-2016
- 114 maize fields
- Agricultural practices and vegetation parameters

INDEPENDENT DATASET TO TEST THE ROBUSTNESS OF THE APPROACH
DATA

MODIS NDVI TIME SERIES

LAND SURFACE TEMPERATURE TIME SERIES

SMOS SOIL MOISTURE TIME SERIES

Disaggregated with the DISPATCH method [Merlin et al., 2013]
Phenology, Vegetation vigor and drought/heat stress related indicators

- CWSI
- TCI
- TVDI
- SMADI
- NDVI
- SSM

DATA
- MODIS NDVI time series
- Land Surface Temperature time series
- SMOS Soil Moisture time series

Disaggregated with the DISPATCH method [Merlin et al., 2013]
Data
- MODIS NDVI time series
- Land surface temperature time series
- SMOS soil moisture time series

Phenology, Vegetation vigor and drought/heat stress related indicators
- CWSI
- TCI
- TVDI
- SMADI
- NDVI
- SSM

Start of Season
Peak of Season
End of Season

Disaggregated with the DISPATCh method [Merlin et al., 2013]
Data

- MODIS NDVI time series
- Land surface temperature time series
- SMOS soil moisture time series

Disaggregated with the DISPATCH method [Merlin et al., 2013]

Phenology, Vegetation vigor and drought/heat stress related indicators

- CWSI
- TCI
- TVDI
- SMADI
- NDVI
- SSM

- Start of Season
- Peak of Season
- End of Season

- Vegetative period
- Productive period
<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>DATA</th>
<th>METHODS</th>
<th>BIOMASS & CSTR</th>
<th>YIELD</th>
<th>CONCLUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARRA-O CROP MODEL [BARON ET AL., 2005; CASTETS ET AL., IN PREP]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SARRA-O CROP MODEL [BARON ET AL., 2005; CASTETS ET AL., IN PREP]

- Sarra-H, a crop model for maize
- Daily time step
- Attainable biomass and yields under **climatic constraints**

- Implementation under the **Ocelet Modelling Plateform**
- **ECMWF** agrometeorological data
- **TAMSAT** rainfall data

- Validated for the Tuy province [Akakpo 2017]
SARRA-o CROP MODEL [BARON ET AL., 2005; CASTETS ET AL., IN PREP]

<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>DATA</th>
<th>METHODS</th>
<th>BIOMASS & CSTR</th>
<th>YIELD</th>
<th>CONCLUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarra-H, a crop model for maize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily time step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attainable biomass and yields under climatic constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation under the Ocelet Modelling Plateform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECMWF agrometeorological data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAMSAT rainfall data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validated for the Tuy province [Akakpo 2017]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aboveground biomass at flowering

Crop Water stress from flowering to maturation

Attainable maize final yield

2011-2015

- **AGB-F**
- **Cstr**
- Validated for the Tuy province [Akakpo 2017]
<table>
<thead>
<tr>
<th>STATISTICAL MODELS AND STRATEGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Above Ground Biomass at flowering (AGB-F) and water stress index (Cstr)</td>
</tr>
</tbody>
</table>

| AGB-F | Vegetation and drought indices – Vegetative period |
STATISTICAL MODELS AND STRATEGY

• *Above Ground Biomass at flowering (AGB-F) and water stress index (Cstr)*

<table>
<thead>
<tr>
<th>AGB-F</th>
<th>Vegetation and drought indices – Vegetative period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cstr phase 4-5</td>
<td>Vegetation and drought indices – Productive period</td>
</tr>
</tbody>
</table>
STATISTICAL MODELS AND STRATEGY

- Above Ground Biomass at flowering (AGB-F) and water stress index (Cstr)

<table>
<thead>
<tr>
<th>METHODS</th>
<th>BIOMASS & CSTR</th>
<th>YIELD</th>
<th>CONCLUSION</th>
</tr>
</thead>
</table>

- AGB-F
 - Vegetation and drought indices – Vegetative period
- Cstr phase 4-5
 - Vegetation and drought indices – Productive period

- Multi Linear Regression Model (MLR)
- Random Forest Model (RF)
STATISTICAL MODELS AND STRATEGY

• Above Ground Biomass at flowering (AGB-F) and water stress index (Cstr)

EVALUATION

• 10-fold cross validation
• Cv-R², cv-RMSE ...
STATISTICAL MODELS AND STRATEGY

- Above Ground Biomass at flowering (AGB-F) and water stress index (Cstr)

AGB-F
Vegetation and drought indices – Vegetative period

Cstr phase 4-5
Vegetation and drought indices – Productive period

EVALUATION
- 10-fold cross validation
- Cv-R², cv-RMSE ...

IMPORTANCE VARIABLES
- LMG method
- Mean decrease in MSE
<table>
<thead>
<tr>
<th>Context</th>
<th>Data</th>
<th>Methods</th>
<th>Biomass & Cstr</th>
<th>Yield</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical models and strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Final maize yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTEXT</td>
<td>DATA</td>
<td>METHODS</td>
<td>BIOMASS & CSTR</td>
<td>YIELD</td>
<td>CONCLUSION</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATISTICAL MODELS AND STRATEGY

- **Final maize yield**

ESTIMATION

Final maize yield → AGB-F x Cstr Phase 4-5
STATISTICAL MODELS AND STRATEGY

- **Final maize yield**

 ESTIMATION

 Final maize yield → AGB-F x Cstr Phase 4-5

 FORECASTING

 Final maize yield → Vegetation and drought indices – Vegetative period → MLR, RF
Statistical Models and Strategy

- **Final maize yield**

 Estimation

 Final maize yield → AGB-F x Cstr Phase 4-5

 Forecasting

 Final maize yield → Vegetation and drought indices – Vegetative period

 Validation

 - Yield from field survey
 - Village scale

Methods

- Biomass & Cstr
- Yield
• Overestimation of low values and underestimation of high values
• RF model significantly better than the MLR model (57% of the AGB-F variability)
• Overestimation of low values and underestimation of high values
• RF model significantly better than the MLR model (57% of the AGB-F variability)
• Importance variable for RF = TCI and NDVI (57%)
• Low but still significant predictive power
• But with cv-RRMSE < 2%? Low variability observed in SARRA-O Cstr!
• Low but still significant predictive power
• But with cv-RRMSE < 2%? Low variability observed in SARRA-O Cstr!
• **Temperature Condition Index** is the most important driver
• Impact of heat stress on maize: *grain number* [Eyshi Rezaei et al., 2015]
EVALUATION OF MAIZE YIELDS ESTIMATION AT THE END OF THE SEASON

- **Yield** = \(f(AGB - F, Cstr \text{ Phase } 4 - 5) \)
- Good potential for maize yield estimation (RMSE < 300 kg/ha)
- Good fitting of probability distribution curves:
 - Median SARRA-O: 3634 kg/ha
 - Median MLR: 3648 kg/ha
 - Median RF: 3659 kg/ha
Evaluation of Early Assessment of Maize Yields

- **Yield** = f(Remote Sensing Indices – Vegetative period)
- Good potential for maize yield forecasting (RMSE<300 kg/ha)
- ~50% of maize yield variability can be explained ~2 months before harvest
Validation of Maize Yields with Ground Data

Independent dataset

2014, 2015 and 2016
Validation of Maize Yields with Ground Data

Independent dataset
2014, 2015 and 2016

- RF outperforms MLR:
 - Estimation: $R^2=0.60$
 - Forecasting: $R^2=0.46$
- High overestimation in forecasting
- MLR: 2016 not accurately estimated
A good and effective potential of ‘uncalibrated approach’ to estimate maize yield in scarce data environment
A GOOD AND EFFECTIVE POTENTIAL OF ‘UNCALIBRATED APPROACH’ TO ESTIMATE MAIZE YIELD IN SCARCE DATA ENVIRONMENT

LOOK-BACK ON THE STUDY OBJECTIVES

- Linear vs NonLinear models:
 - Higher performance of RF models both for estimation and early assessment
 - Complex interaction among biophysical, ecological, physiological and management practices
A GOOD AND EFFECTIVE POTENTIAL OF ‘UNCALIBRATED APPROACH’ TO ESTIMATE MAIZE YIELD IN SCARCE DATA ENVIRONMENT

LOOK-BACK ON THE STUDY OBJECTIVES

- **Linear vs NonLinear models:**
 - Higher performance of RF models both for estimation and early assessment
 - Complex interaction among biophysical, ecological, physiological and management practices

- **Estimation vs Early assessment:**
 - Early assessment of maize yields ~ 2 months before harvesting (RF)
 - Complementary of approaches:
 - In-season forecasting: food aids strategies or market and trade information
 - After harvesting: agricultural statistics
 - Both + outputs of crop model: ‘convergence of evidence’ in EWS

GOOD AND EFFECTIVE POTENTIAL OF ‘UNCALIBRATED APPROACH’ TO ESTIMATE MAIZE YIELD IN SCARCE DATA ENVIRONMENT

LOOK-BACK ON THE STUDY OBJECTIVES

- **Linear vs NonLinear models:**
 - Higher performance of RF models both for estimation and early assessment
 - Complex interaction among biophysical, ecological, physiological and management practices

- **Estimation vs Early assessment:**
 - Early assessment of maize yields ~ 2 months before harvesting (RF)
 - Complementary of approaches:
 - In-season forecasting: food aids strategies or market and trade information
 - After harvesting: agricultural statistics
 - Both + outputs of crop model: ‘convergence of evidence’ in EWS

GOOD AND EFFECTIVE POTENTIAL OF ‘UNCALIBRATED APPROACH’ TO ESTIMATE MAIZE YIELD IN SCARCE DATA ENVIRONMENT

LOOK-BACK ON THE STUDY OBJECTIVES

- **Linear vs NonLinear models:**
 - Higher performance of RF models both for estimation and early assessment
 - Complex interaction among biophysical, ecological, physiological and management practices

- **Estimation vs Early assessment:**
 - Early assessment of maize yields ~ 2 months before harvesting (RF)
 - Complementary of approaches:
 - In-season forecasting: food aids strategies or market and trade information
 - After harvesting: agricultural statistics
 - Both + outputs of crop model: ‘convergence of evidence’ in EWS
THANK YOU FOR LISTENING

Leroux Louise – CIRAD UR AÏDA/CSE
louise.leroux@cirad.fr
www.louise.leroux.igeo.fr

MORE INFORMATION:
LEROUX ET AL., 2017, Maize grain yield estimating in a west African agricultural landscape at the crossroads between remote sensing, crop modelling and statistical methods: Case study in south-west of Burkina Faso, to be submitted to Agric.FoR.MeteoroL